# How do organisms with only an innate immune response have adaptive immunity?





### Immunity in humans is adaptive



# Information flow in the adaptive immune system



### One source of adaptation is the modification of antibodies



### Memory comes from the amplification of specific T and B cells

Naive

Experienced



1:100,000



1:1000

# Memory in nervous system comes from long term changes in cells and changes in the network structure



#### Long term facilitation



#### **Short term adaptation in fruit flies**



Time after infection with P.aeruginosa (h)

Boman et al Nature 1972 237: 232-235

#### Population density and immune status





#### Virus sensitivity in crowded vs solitary caterpillars



Reeson et al. 1998 Proc. R. Soc. Lond. B 265: 1787-1791

#### Density dependent immunity in locusts



Wilson et al. 2002 PNAS 99: 5471-5475

#### Maternal control of gregaria/solitaria ratio



# Forced fever in female locusts causes them to increase the number of solitaria they produce

| Treatment      | Hatchling colour score |                  |                 |                  |                   |       |
|----------------|------------------------|------------------|-----------------|------------------|-------------------|-------|
|                | 1                      | 2                | 3               | 4                | 5                 | Total |
| Experiment 1   |                        |                  |                 |                  |                   |       |
| Infected       | $14.6 \pm 2.5\%$       | $6.4 \pm 2.9\%$  | $7.4 \pm 3.8\%$ | $6.8 \pm 2.0\%$  | $64.8 \pm 9.8\%$  | 1655  |
| Control high   | $1.4 \pm 0.6\%$        | $2.5 \pm 1.5\%$  | $2.4 \pm 1.1\%$ | $3.6 \pm 1.6\%$  | $90.2 \pm 4.7\%$  | 2042  |
| Control medium | $1.2 \pm 0.4\%$        | $2.5 \pm 0.6\%$  | $2.6 \pm 1.0\%$ | $10.9 \pm 2.0\%$ | $82.8 \pm 1.5\%$  | 1402  |
| Control low    | $1.3 \pm 0.6\%$        | $3.3 \pm 1.3\%$  | $9.3 \pm 3.2\%$ | $7.7 \pm 3.0\%$  | $78.5 \pm 5.0\%$  | 648   |
| Experiment 2   |                        |                  |                 |                  |                   |       |
| 'Fevered'      | $13.6 \pm 4.6\%$       | $13.1 \pm 6.0\%$ | $1.1 \pm 0.9\%$ | $9.9 \pm 5.5\%$  | $62.3 \pm 12.6\%$ | 780   |
| Control        | 4.4 ± 1.1%             | $11.5 \pm 3.9\%$ | $4.7 \pm 2.2\%$ | $12.0 \pm 5.9\%$ | $67.3 \pm 4.8\%$  | 1031  |

Elliot et al. 2003 Ecology Letters 6: 830-836

#### Maternal transmission of adaptation to BT toxin

| Cross        | LC <sub>50</sub> (ppm) | 95% C.I.    | Slope | RR  |
|--------------|------------------------|-------------|-------|-----|
| Susceptible  | 231                    | 203–262     | 2.62  | _   |
| $S{	imes}T$  | 476                    | 372-580     | 2.39  | 2   |
| $T \times S$ | 1,200                  | 1,038–1,372 | 2.22  | 5.2 |
| Tolerant     | 1,816                  | 1,489–2,227 | 2.02  | 7.9 |

Differences in control mortality (mean 3.51%) were not significant (F = 0.185, P = 0.905). C.I., confidence interval; RR, resistance ratio.

Rahman et al. 2004 PNAS 101: 2696-2699

### Honeybee offspring can have activated immune systems if the hive is infected





Agrawal et al 1999 Nature 401:60-63

#### **Experimental protocol for Daphnia infection**





### Raddish have a maternal regulated immune response



Agrawal et al 1999 Nature 401:60-63

#### Clearly there are many examples of maternal transmission of immunity



#### **Cockroach immunity**



Faulhaber and Karp, 1992, Immunology, 5: 378-81

### Prechallenge with gram positive bacteria does not offer long term protection agains Pseudomonas aeruginosa



Faulhaber and Karp, 1992, Immunology, 5: 378-81

### Does the roach experiment show a decaying immune response or an adaptation?



karp et al. 1994 Ann. N.Y. Acad. Sci. 712: 82-91

### An insect immune response protects the animal for at least a week following infection



Moret and Siva-Jothy 2003 Proc. R. Soc. Lond. B 270: 2475-2480

# A long lasting immune response might be considered adaptive





### Streptococcus pneumoniae has a sublethal infectious dose in the fly



## Dead S.pneumoniae can protect against live infections



#### Priming lasts for as long as we can test it



# Adaptation does not appear to offer cross protection



**Prime: Listeria Challenge: Listeria** 

Prime: S.pneumoniae Challenge: Listeria

### During the first immune challenge antimicrobial peptide gene induction peaks at 6 hours



#### Primed flies respond faster and stronger



