Taormina Sicily, site of Toll 2004

Creation of a Toll chimera to regulate activation

Toll chimeras signal constitutively

Medzhitov et al 1997 Nature 388:394-7

Toll chimeras activate NFkB

Gram positive and Gram negative bacteria

Gram positive

Gram negative

Lipopolysaccharide (LPS) structure

O Antigen

Does Tlr2 really bind to LPS?

Mapping of the LPS mutation identified Tlr4 as a player in LPS signaling

LPS resistant LPS sensitive

In the mouse Tlr4 mutations cause a dominant loss of response to LPS

transcript not expressed in C57BL/10ScCr mice either Poltorak et al. 1998 Science 282: 2085-88

Transfer of LPS

LOS is processed from aggregates and passed to MD2 via CD14

Table 1. Ability of various forms of ¹⁴C-LOS with or without proteins to form LOS:MD-2 and activate HEK/TLR4

Materials	LOS:MD-2	Activation
LOS _{agg} + LBP		
LOS _{agg} + LBP, MD-2		
LOS _{agg} , LBP, sCD14		
LOS _{agg} , LBP, sCD14, MD-2	+++	+ + +
LOS:sCD14		
LOS:sCD14 + MD-2	+++	+ + +
LOS:sCD14 + conditioned culture media (no MD-2)		

Gioannini et al. 2004 PNAS101: 4186-4191

Crystal structure of Der P 2

Derewenda et al. 2002 JMB 318:189-197

Tolls are activated by a range of elicitors

Activated Tlr5 induces NFkB

Hayashi et al. 2001 Nature 410: 1099-1103

Purification of the PAMP signaling through TLR5

Hayashi et al. 2001 Nature 410: 1099-1103

Testing the role of flagellin in Tlr5 induction

Induce non-flagellated E.coli to express Listeria flagellin

Flagellin signaling

A common allele of TIr5 encodes a stop codon

Wild type Tlr5

TIr5^{392STOP}

Hawn et al 2003 J. Exp. Med. 198: 1563-1572

Tlr2 mutations predispose a patient towards lepromatous rather than tubercular leprosy Arg677 -Trp mutation

The location of the Tlr affects its function

Nat Immunol. 2006 Jan;7(1):49-56

A role for Tlr9 in Lupus

Drugs and adjuvants based on toll signaling

Company	Product	Use	Mechanism
3M	imiquimod	genital warts	Tlr7 agonist
Coley	synthetic CpG	lymphoma	Tlr9 agonist
	oligo		
Dynavax	1018 SS	Hep B vaccine	Tlr9 agonist
Idera	IMOxine	carcinoma	Tlr9 agonist
Eisai	E5564	Sepsis	Tlr4 antagonist
Anadys	isatoribine	Chronic HepC	Tlr7 agonist

Nature Biotechnology

Published online: 6 March 2006; | doi:10.1038/nbt0306-230

A natural ligand of Tlr7/8 is ssRNA

Heil et al. 2004 Science 303: 1526-1529

Imiquimod - sold as Aldara

Tlr 7/8 agonist with potent antiviral activity

Treatment of basal cell carcinoma with imiquimod

Before

During

After

Corixa has studied a Tlr4 antagonist

Fort et al. The Journal of Immunology, 2005, 174: 6416-6423.

Bacteria produce proteins that interfere with host cell signals

Microbes have evolved methods of inhibiting Toll signaling

Pseudomonas strain PA14 kills better than strain D12

Toll signaling is induced to a lesser degree with PA14 than D12

Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2573-8

Blocking Toll signaling by viruses and bacteria

Hepatitis C virus interferes with Toll Signaling

Protease insensitive Trif maintains the Tlr3 response to poly IC

PNAS | February 22, 2005 | vol. 102 | no. 8 | 2992-2997

Clearly, activation of dendritic cells is important at a whole cell level

Different types of phagocytosis follow Toll activation.

Nature. 2006 Apr 6;440(7085):808-12

Complement can be activated through three pathways

From Immunobiology by Janeway et al.

Activation of complement proteases

Paul, Vth edition

Proteolytic removal of pre-peptide leads to protease activation

The thioester bond forms an unstable intermediate

Gadjeva et al. 1998 J. Immunology165: 985-990

Convertase is deactivated by factors H and I

C3 cleavage produces several active peptides

Inhibition of a thioester protein, aTEP-1, in mosquito cells blocks phagocytosis

Levashina et al. 2001 Cell 104: 709-718