Innate Immunity M&I 104/204

Professor: David Schneider dschneider@stanford.edu

Two arms to the human immune system

Innate: born with it

- -Specific
- -Acquired
- -RAG dependent

Names are important

Pro-choice vs Pro-life
French fries vs freedom fries
Canola vs rapeseed
Broccoli rape vs broccolini
Healthy skies initiative

Two arms to the human immune system

Innate: born with it

- -Specific
- -Acquired
- -RAG dependent

Adaptive immune responses depend upon somatic recombination to produce variation

Logic of the RAG immune response

Why study innate immunity?

Simple mutations can provide immunity

Our surfaces are protected by antimicrobial compounds and have a native flora

sneeze bugs

http://www.ces.uga.edu/pubcd/B693.htm

Activation of innate immune signaling

Pattern Recognition

Alteration of host metabolism

Cells and soluble factors fight infections inside the body

Innate physiological responses to infection can produce pathology

The brain is an innate immune organ

glucocorticoid release

direct neural signaling

Are there behaviorial contributions to innate immunity?

Memory and the innate immune response

Not all hosts are created equal

Polymorphisms and infectious disease

Disease	Gene	Mechanism
Malaria		
	G6PDH	alters redox balance
	Hemoglobin: sickle cell anemia	?
	TNF Promotor	over-reaction to infection
	Thalassemia	?
	Hemoglobin	?
	CCR2	P. vivax receptor
Typhoid		
fever		
	CFTR: cystic fibrosis gene	S. typhi receptor
AIDS		
	CCR5	HIV receptor
	Enhanced NK activity	?
Leprosy		
	TLR 2	poor cellular response
Ngana		
	TLF	lytic factor kills parasite
Sepsis		
	Factor V Leiden	?

Basic themes

Missing receptors

Altered pathogenesis

Wrong environment

Bacillus thuringiensis causes lethal infections in a variety of insects

B.thuringiensis is infectious orally

The delta-endotoxin must first be cleaved before it binds its receptor

Transgenic crops are useful for fighting insects that are hard to reach by spraying

Not everyone agrees this is a good idea

Insects can mutate in a variety of manners to become resistant

Species	mechanism
P. interpunctella	= activation, low binding
P. interpunctella	reduced activation, = binding
S. exigua	increased non-specific binding
H. virescens	reduced activation, increased degradation

From Ferre and Van Rie, 2002, Annu. Rev. Entomology, 47: 501:33

Early models assumed that B.t. and B.t. toxin were the only components required to kill their hosts. The toxin was predicted to punch a whole through the gut and this lead to starvation or the invation of B.t.

So, Nichole Broderick asked a simple question: Are native flora important in a B.t infection? PNAS. 103.#41, pp 15196-15199, 2006 It turned out that it is the bug's native flora that is the lethal agent when B.t. toxin is present. In the absence of gut flora, B.t. is harmless.

Plasmodium vivax and the Duffy antigen

malaria: P. vivax entry is mediated by duffy antigen

Table 2. Relation between Resistance to *P. vivax* Malaria, Race and Duffy Blood-Group Phenotype.*

Study No.	VOLUNTEER NO.	PREPATENT PERIOD [†]	RACE	Рнепотуре
I	1	11 days	Black	Fy(a-b+)
II	2	Never patent	Black	Fy(a-b-)
	3	12 days	White	ND‡
III	4	Never patent	Black	Fy(a-b-)
	5	9 days	White	ND‡
IV	6	15 days	Black	Fy(a+b-)
V	7	Never patent	Black	Fy(a-b-)
	8	12 days	Black	Fy(a-b+)
VI	9	Never patent	Black	Fy(a-b-)
	10	Never patent	Black	Fy(a-b-)
	11	14 days	Black	Fy(a-b+)
	12	15 days	Black	Fy(a-b+)
	13	11 days	Black	Fy(a+b-)
	14	12 days	White	Fy(a-b+)
	15	11 days	White	Fy(a-b+)
	16	10 days	White	Fy(a+b+)
	17	12 days	White	Fy(a+b+)

Miller et al. 1976 N Engl J Med 295:302-4

The P.vivax duffy binding protein thus makes an interesting vaccine candidate

Michon et al, 2000, IAI, 68: 3164-71

HIV enters macrophages through the cytokine receptor CCR5

How can we use this information?

Cystic fibrosis gene CFTR is the receptor of Salmonella typhi

Pier et al. 1998, Nature 393: 79-82

CFTR mutant mice are resistant to some strains of S.typhi

Pier et al. 1998, Nature 393: 79-82

Cholera toxin and CFTR hypothesis

Cystic Fibrosis and Cholera

by Ken Beauchamp J. Clin. Invest.

Gut loop experiment: toxin is injected into a closed loop of gut

Inhibition of the CFTR results in lowered volumes of diarrhea

Thiagarajah et al. 2004, Gastroenterology, 126: 511-519

G6PDH carriers are less susceptible to severe malaria

	Controls	Mild malaria	Severe malarial anaemia	Cerebral malaria	All severe malaria	Odds ratio (confidence interval), mild v. controls	Odds ratio (confidence interval), severe v. controls
Females hetero	ozygotes						
Gambia	13.7 n=182	9.1 n = 165	5.3 n=94	6.8 n=174	6.7 n = 255	0.62 (0.30-1.29) P=0.23	0.45 (0.22-0.89) P=0.02
Kenya	27.3 n = 143	17.2 n=116	20.6 n=68	16.9 n = 65	18.8 n = 133	0.52 (0.27-0.99) P=0.047	0.60 (0.33-1.11) P=0.11
Combined or						0.59 (0.36–0.94) P=0.027	0.54 (0.34–0.84) P=0.006
Male hemizygo	tes						
Gambia	5.9 n = 239	2.7 n=182	1.3 n=80	1.9 n=208	1.4 n=279	0.45 (0.14–1.38) P=0.20	0.23 (0.06-0.77) P=0.012
Kenya	18.8 n=149	14.3 n=133	14.9 n = 47	8.6 n = 70	11.1 n = 117	0.72 (0.23–1.42) P=0.40	0.54 (0.25–1.15) P=0.12
Combined or	dds ratio					0.63 (0.36–1.11) P=0.12	0.42 (0.22-0.77) P=0.004

Ruwende et al. 1995, Nature 376

G6PDH: source of NADPH in the body

G6PDH homozygotes are sensitive to oxidizing reagents

Two compounds found in fava beans that are toxic to homozygotes

G6PDH combined with malaria and oxidant drugs causes "blackwater fever"

Why are fava beans, G6PDH and malaria associated?

http://www.as.ua.edu/ant/bindon/ant475/g6pd/g6pd.htm

Plasmodium is more sensitive to oxidants in G6PDH mutants

System	$-\beta$ -glucosidase	$+\beta$ -glucosidase
Normal RBC+ vicine	1.17 ± 0.103	1.00 ± 0.053
Normal RBC+ convicine	0.83 ± 0.052	0.74 ± 0.028
Hemizygous G6PD ⁻ + vicine	1.13 ± 0.065	0.76 ± 0.043
Hemizygous G6PD ⁻ + convicine	0.59 ± 0.017	0.44 ± 0.033
Homozygous G6PD ⁻ + vicine	0.60 ± 0.172	0.33 ± 0.103

Ginsberg et al. 1996, Parasitology 113: 7-18

Fava beans and G6PHDH deficiency alter the ability of the cell to deal with oxidative stress

Plasmodium is sensitive to oxidative stress